Number of Citations

AstroDB: 2024

  1. Fulford, R., et al., 2024, QRIS: A Quantitative Reflectance Imaging System for the Pristine Sample of Asteroid Bennu, arXiv:2402.18674v1 [astro-ph.EP] 28 Feb 2024.
  2. Elsila, J., Aponte, J., McLain, H., Simkus, D., Dworkin, J., Glavin, D., Zeigler, R., McCubbin, F., The ANGSA Science Team, 2024, Soluble Organic Compounds and Cyanide in Apollo 17 Lunar Samples: Origins and Curation Effects, JGR, doi:10.1029/2023JE008133
  3. Lauretta, D., et al., 2024, Asteroid (101955) Bennu in the Laboratory: Properties of the Sample Collected by OSIRIS-REx, Submitted to Meteoritics and Planetary Science April 18, 2024, https://arxiv.org/pdf/2404.12536
  4. Zhang, B., et al., 2024, Compositions of iron-meteorite parent bodies constrain the structure of the protoplanetary disk, PNAS, doi:10.1073/pnas.230699512

AstroDB: 2023

  1. Bindi, L., Cruciani, G., 2023, Celebrating the International Year of Mineralogy: Progress and Landmark Discoveries of the Last Decades, Springer, 359 pp. IBSN: 303128805X, 9783031288050
  2. Deng, Z., Schiller, M., Jackson, M.G. et al., 2023 Earth’s evolving geodynamic regime recorded by titanium isotopes. Nature, doi:10.1038/s41586-023-06304-0
  3. Frossard, P., Bonnand, P., Moyet, M., Bouvier, A., 2023, Role of redox conditions and thermal metamorphism in the preservation of Cr isotopic anomalies in components of non-carbonaceous chondrites, GCA, In Press, doi: 10.1016/j.gca.2023.12.022
  4. Luo, B., Wang, Z., Song, J. et al., 2023 The magmatic architecture and evolution of the Chang’e-5 lunar basalts. Nat. Geosci. doi: 10.1038/s41561-023-01146-x
  5. Onyett, I.J., Schiller, M., Makhatadze, G.V. et al., 2023, Silicon isotope constraints on terrestrial planet accretion. Nature. doi:10.1038/s41586-023-06135-z
  6. Prissel, K., Fei, Y., Strobel, T., 2023, Feiite: Synthesis, stability, and implications for its formation conditions in nature. American Mineralogist 108 (7): 1315–1321. doi: 10.2138/am-2022-8633
  7. Prabhu, A., Morrison, S.M., Hazen, R.M. (2023). Mineral Informatics: Origins. In: Bindi, L., Cruciani, G. (eds) Celebrating the International Year of Mineralogy. Springer Mineralogy. Springer, Cham. doi:10.1007/978-3-031-28805-0_3
  8. Schweitzer, A., 2023, New Insights into the Petrogenesis of Lunar Basalt Breccia Meteorites from the Dominion Range (DOM) 18543, MS Thesis, Miami University.
  9. Sehlke, A., Sears, D, 2023, The Apollo 17 Regolith: Induced Thermoluminescence Evidence for Formation by a 2 Single Event ~100 Million Years Ago and Possibly the Presence of Tycho Material.JGR – Planets ANGSA Special Issue (not yet published)
  10. Yuan, J., Huang, H., Chen, Y., Yang, W., Tian, H., Zhang, D, Zhang, H., 2023,Automatic Bulk Composition Analysis of Lunar Basalts: Novel Big-Data Algorithm for Energy-Dispersive X-ray Spectroscopy, ACS Earth Space Chem. 2023, doi:10.1021/acsearthspacechem.2c00260

AstroDB: 2022

  1. Gorce, J., Mittlefehldt, D., Simon, J., 2022,Localized equilibrium and mineralogic effects on trace element distribution and mobility in highly metamorphosed eucrite Elephant Moraine (EET) 90020, Geochimica et Cosmochimica Acta, doi:10.1016/j.gca.2022.08.034
  2. Johnston, S., Brandon, A., McLeod, C. et al. ,2022, Nd isotope variation between the Earth–Moon system and enstatite chondrites. Nature, doi: 10.1038/s41586-022-05265-0
  3. Nicklas, R. W., Day, J. M. D., Gardner-Vandy, K. G., & Udry, A., 2022, Early silicic magmatism on a differentiated asteroid. Nature Geoscience, doi:10.1038/s41561-022-00996-1
  4. Torcivia, M. A., Neal, C. R. ,2022, Unraveling the components within Apollo 16 ferroan anorthosite suite cataclastic anorthosite sample 60025: Implications for the lunar magma ocean model. Journal of Geophysical Research: Planets, 127, e2020JE006799. doi: 10.1029/2020JE006799
  5. Zhang, B., Chabot, N., Rubin, A., 2022, Compositions of carbonaceous-type asteroidal cores in the early solar system, Science Advances, doi:10.1126/sciadv.abo5781
  6. Zhang, D., Su, B., Chen, Y., Yang, W., Mao, Q. Jia, L-H., 2022, Titanium in olivine reveals low-Ti origin of the Chang’E-5 lunar basalts, Lithos, doi:10.1016/j.lithos.2022.106639

AstroDB: 2021

  1. Brugman, K., Phillips, M., Till,. C., 2021, Experimental Determination of Mantle Solidi and Melt Compositions for Two Likely Rocky Exoplanet Compositions, JGR: Planets Special Issue Exoplanets: The Nexus of Astronomy and Geoscience, doi:10.1029/2020JE006731
  2. Vogt, M., Trieloff, M., Ott, U., Hopp, J., Schwarz, W., 2021, Solar noble gases in an iron meteorite indicate terrestrial mantle signatures derive from Earth’s core. Communications Earth & Environment, doi:10.1038/s43247-021-00162-2
  3. Norman, M., Jourdan, F., Hui, S., 2019, Impact History and Regolith Evolution on the Moon: Geochemistry and Ages of Glasses from the Apollo 16 Site, JGR Planets, doi:10.1029/2019JE006053
  4. Xue, Z., Welsh, D., Neal, C., Xioa, L., 2021, Understanding the textures of Apollo 11 high-Ti mare basalts: A quantitative petrographic approach, Meteoritics & Planetary Science, doi:10.1111/maps.13767